The choice of anti-scatter grids in diagnostic radioIogy: the optimization of image quaIity and absorbed dose
نویسندگان
چکیده
A Monte Carlo model is developed to study and optimise the design of antiscatter grids in diagnostic radiology. The imaging chain including X-ray energy spectra, phantom (representing the patient), grid and image receptor is simulated. Image qua1ity is quantified in terms of contrast (conventionai screen-film imaging) and signal-to-noise ratio, SNR (digital imaging) and the radiation detriment to the patient (risk) by the mean absorbed dose in the phantom. The advantages of using fibre instead of aluminium for grid interspaces and covers are quantified. Compared to aluminium grids, the absorbed dose is reduced by 10-50%, contrast is improved by 0-10% and SNR by 10-40% (digital radiography). The advantages are larger at low tube potentials and for grids with high ratio and low strip density. Commercial grids, with different interspace materials, strip density, strip width and grid ratio, are compared in paediatric, lumbar spine and chest examinations. The differences in dose increase and contrast improvement factors obtained with these grids are mainly due to the use of different materials in the grid interspaces, but the strip design is also important. In a global optimisation of grid design and tube potential at fixed contrast, it is found that grids of different strip density and ratio all can have good performances provided that they are used with appropriate strip width and tube potential. In the paediatric examination, low ratio grids need thinner strips than used today to be optimal. A small air gap could a1ternatively be used. In examinations with more scatter (adult AP), present commercial grids are optimal (r=12-16, d=30SOllm). In the lateral view (even more scatter), grids with ratios larger than 16 are optimal provided the grid can be accurately a1igned in the beam. The optimization is performed with grids with fibre interspaces and covers since low atomic number materials should preferably be used for materials between the patient and the receptor. Optimal grids with aluminium for these components have lower grid ratio and higher strip densities than optimal fibre grids.
منابع مشابه
Optimization of Parameters in 16-slice CT-scan Protocols for Reduction of the Absorbed Dose
Introduction In computed tomography (CT) technology, an optimal radiation dose can be achieved via changing radiation parameters such as mA, pitch factor, rotation time and tube voltage (kVp) for diagnostic images. Materials and Methods In this study, the brain, abdomen, and thorax scaning was performed using Toshiba 16-slice scannerand standard AAPM and CTDI phantoms. AAPM phantom was used for...
متن کاملEvaluation of Factors Affecting Absorbed Dose, Optimization Methods and Patient Dose Reduction in Dental Cone Beam CT (CBCT)
Introduction: Nowadays the use of cone beam computed tomography in dental imaging is increasing, although this method has a much lower dose than conventional CT scans, it delivers a higher dose than the panoramic and periapical patients therefore, , the aim of this study was to investigate the factors affecting the patients' dose in dental CBCTs and methods of optimizing and reducing the patien...
متن کاملOptimization of Head CT Protocol to Reduce the Absorbed Dose in Eye Lenses and Thyroid: A Phantom Study
Introduction: Utilization of computed tomography (CT) scans is increasing annually. This study aimed to reduce the absorbed dose of sensitive organs in the head (eye lenses and thyroid) and to assess changes in resultant images quality in head scans when the radiation dose is decreased. Material and Methods: An anthropomorphic phantom was examined with head protocols in both helical and sectio...
متن کاملThe effect of contrast agent on delivered dose during diagnostic imaging of thoracic region
This study evaluated the impact of contrast material on the estimation of absorbed dose due to computed tomography pulmonary angiography (CTPA) using the ICRP reference phantoms. To address this issue, we modified the previously developed physiologically based pharmacokinetic (PBPK) model to be conformed to the ICRP reference phantoms. Regarding the standard contrast material injection protocol...
متن کاملA Phantom Study for the Optimization of Image Quality and Radiation Dose for Common Radiographic Examinations in Digital Radiography
Introduction: Phantom studies facilitate the implementation of radiation dose surveillance as a function of radiographic technical parameters for minimizing patient radiation dose. The evidence of such investigations can then be used to evaluate technical parameters used in the radiographic procedures to reduce radiation dose without compromising the image quality. Material and Methods: This ex...
متن کامل